Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            NA (Ed.)Deep learning models have achieved remarkable accuracy for structural response modeling. However, these models heavily depend on having a sufficient amount of training data, which can be challenging and time-consuming to collect. Moreover, data-driven models sometimes struggle to adhere to physics constraints. Therefore, in this study, a physics-informed long short-term memory (PI-LSTM) network was applied to structural response modeling by incorporating physics constraints into deep learning. The physics constraints were modified to accommodate the characteristics of both linear and nonlinear cases. The PI-LSTM network, inspired by and compared with existing physics-informed deep learning models (PhyCNN and PhyLSTM), was validated using the numerical simulation results of the single-degree-of-freedom (SDOF) system and the experimental results of the six-story building. Additionally, the PI-LSTM network underwent thorough investigation and validation across the four cases of the SDOF system and numerical simulation results of the six-story building with the comparison of the regular LSTM. The results indicate that the PI-LSTM network outperformed the regular LSTM models in terms of accuracy. Furthermore, the PI-LSTM network exhibited a more concentrated and higher accuracy range when analyzing the results of both the SDOF system and the six-story building. These findings demonstrate that the PI-LSTM network presents a reliable and efficient approach for structural response modeling.more » « less
- 
            NA (Ed.)The brain’s functional connectome continually rewires throughout an organism’s life. In this study, we sought to elucidate the operational principles of such rewiring in mouse primary motor cortex (M1) by analyzing calcium imaging of layer 2/3 (L2/3) and layer 5 (L5) neuronal activity in M1 of awake mice during a lever-press task learning. Our results show that L2/3 and L5 functional connectomes follow a similar learning-induced rewiring trajectory. More specifically, the connectomes rewire in a biphasic manner, where functional connectivity increases over the first few learning sessions, and then, it is gradually pruned to return to a homeostatic level of network density. We demonstrated that the increase of network connectivity in L2/3 connectomes, but not in L5, generates neuronal co-firing activity that correlates with improved motor performance (shorter cue-to-reward time), while motor performance remains relatively stable throughout the pruning phase. The results show a biphasic rewiring principle that involves the maximization of reward/performance and maintenance of network density. Finally, we demonstrated that the connectome rewiring in L2/3 is clustered around a core set of movement-associated neurons that form a highly interconnected hub in the connectomes, and that the activity of these core neurons stably encodes movement throughout learning.more » « less
- 
            NA (Ed.)Deep transfer learning (TL) has great potential for a wide range of applications in civil engineering. This work aims to propose a deep transfer learning-based method for vehicle classification by asphalt pavement vibration. This work first used the pavement vibration IoT monitoring system to collect raw vibration signals and performed the wavelet transform to obtain denoised vibration signals. The vibration signals were then represented in two different ways, including the time-domain graph and the time-frequency graph. Finally, two deep transfer learning-based methods, namely Method Ⅰ (Time-domain & TL) and Method Ⅱ (Time-frequency & TL), were applied for vehicle classification according to the two different representations of vibration signals. The results show that the CNN model had a satisfactory performance in both methods with the accuracy of Method Ⅰ exceeding 0.94 and Method Ⅱ exceeding 0.95. The CNN model in Method Ⅱ performed better in the accuracy metrics with considering label imbalance, but worse in the accuracy metrics without considering label imbalance than that in Method Ⅰ. The differences between these two methods have been investigated and discussed in detail in terms of input types, accuracy metrics, and application prospects. The CNN model with deep transfer learning could be an effective, accurate, and reliable technique for vehicle classification based on asphalt pavement vibration.more » « less
- 
            Abstract Objective . Neural decoding is an important tool in neural engineering and neural data analysis. Of various machine learning algorithms adopted for neural decoding, the recently introduced deep learning is promising to excel. Therefore, we sought to apply deep learning to decode movement trajectories from the activity of motor cortical neurons. Approach . In this paper, we assessed the performance of deep learning methods in three different decoding schemes, concurrent, time-delay, and spatiotemporal. In the concurrent decoding scheme where the input to the network is the neural activity coincidental to the movement, deep learning networks including artificial neural network (ANN) and long-short term memory (LSTM) were applied to decode movement and compared with traditional machine learning algorithms. Both ANN and LSTM were further evaluated in the time-delay decoding scheme in which temporal delays are allowed between neural signals and movements. Lastly, in the spatiotemporal decoding scheme, we trained convolutional neural network (CNN) to extract movement information from images representing the spatial arrangement of neurons, their activity, and connectomes (i.e. the relative strengths of connectivity between neurons) and combined CNN and ANN to develop a hybrid spatiotemporal network. To reveal the input features of the CNN in the hybrid network that deep learning discovered for movement decoding, we performed a sensitivity analysis and identified specific regions in the spatial domain. Main results . Deep learning networks (ANN and LSTM) outperformed traditional machine learning algorithms in the concurrent decoding scheme. The results of ANN and LSTM in the time-delay decoding scheme showed that including neural data from time points preceding movement enabled decoders to perform more robustly when the temporal relationship between the neural activity and movement dynamically changes over time. In the spatiotemporal decoding scheme, the hybrid spatiotemporal network containing the concurrent ANN decoder outperformed single-network concurrent decoders. Significance . Taken together, our study demonstrates that deep learning could become a robust and effective method for the neural decoding of behavior.more » « less
- 
            The inference of neuronal connectome from large-scale neuronal activity recordings, such as two-photon Calcium imaging, represents an active area of research in computational neuroscience. In this work, we developed FARCI (Fast and Robust Connectome Inference), a MATLAB package for neuronal connectome inference from high-dimensional two-photon Calcium fluorescence data. We employed partial correlations as a measure of the functional association strength between pairs of neurons to reconstruct a neuronal connectome. We demonstrated using in silico datasets from the Neural Connectomics Challenge (NCC) and those generated using the state-of-the-art simulator of Neural Anatomy and Optimal Microscopy (NAOMi) that FARCI provides an accurate connectome and its performance is robust to network sizes, missing neurons, and noise levels. Moreover, FARCI is computationally efficient and highly scalable to large networks. In comparison with the best performing connectome inference algorithm in the NCC, Generalized Transfer Entropy (GTE), and Fluorescence Single Neuron and Network Analysis Package (FluoroSNNAP), FARCI produces more accurate networks over different network sizes, while providing significantly better computational speed and scaling.more » « less
- 
            Abstract 3D printing, also known as additive manufacturing, holds immense potential for rapid prototyping and customized production of functional health‐related devices. With advancements in polymer chemistry and biomedical engineering, polymeric biomaterials have become integral to 3D‐printed biomedical applications. However, there still exists a bottleneck in the compatibility of polymeric biomaterials with different 3D printing methods, as well as intrinsic challenges such as limited printing resolution and rates. Therefore, this review aims to introduce the current state‐of‐the‐art in 3D‐printed functional polymeric health‐related devices. It begins with an overview of the landscape of 3D printing techniques, followed by an examination of commonly used polymeric biomaterials. Subsequently, examples of 3D‐printed biomedical devices are provided and classified into categories such as biosensors, bioactuators, soft robotics, energy storage systems, self‐powered devices, and data science in bioplotting. The emphasis is on exploring the current capabilities of 3D printing in manufacturing polymeric biomaterials into desired geometries that facilitate device functionality and studying the reasons for material choice. Finally, an outlook with challenges and possible improvements in the near future is presented, projecting the contribution of general 3D printing and polymeric biomaterials in the field of healthcare.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
